We design and grow rare earth doped crystals in which we aim at controlling optical and spin non-classical states. These materials, produced in the form of bulk and nanostructured single crystals, show extremely long-lived quantum states at low temperature. This unique property in the solid state enables us to address a broad range of applications, from quantum information processing and communication, to spectral analysis and medical imaging.
We belong to the Material for Photonics and Opto-Electronics team of the Institut de Recherche de Chimie Paris. The Institute is a joint unit between Chimie ParisTech graduate school, member of the PSL University, and the Centre National de la Recherche Scientifique.
HIGHLIGHTS
The next workshop on rare earth ions for quantum information is announced! Check it here.
Read more
Read more
Read more
To meet the high demands of quantum technologies, systems with multiple quantum degrees of freedom that can be addressed by light and coupled to other quantum systems in hybrid architectures are strongly needed. We aim at building such devices from solid-state nanostructures that exploit the uniquely narrow optical transitions of rare earth ions. We expect these devices to have a strong impact on quantum communication, quantum sensing and quantum opto-electronics.
A key point of nanoscale quantum systems is to preserve long-lived quantum states despite the larger environmental noise present at surfaces and interfaces, or originating in additional defects.
We develop rare earth doped nanocrystals and thin films with high crystalline quality and purity by bottom-up approaches based on soft chemistry and other techniques. The combination of structural characterization and optical spectroscopy allows us to synthesize nanostructures with low perturbations to the optical quantum states. High performance materials can be used to build hybrid devices, where ions like europium or erbium can provide a quantum interface between light and other quantum systems.
Quantum memories are devices capable of faithfully storing photonic quantum states into matter. Their applications include long distance quantum cryptography and more generally quantum networks. Rare-earth ions are promising candidates for solid-state quantum memories, because of the long-lived superposition states of their optical and spin transitions.
We investigate crystals with multiple degrees of freedom, in which quantum states can be transferred between optical, electron and nuclear spins. In this way, quantum interfaces can be achieved between propagating quantum bits (optical and microwave photons), and long-lived quantum bits (nuclear spins). We aim at increasing quantum states lifetimes by material design and control techniques based on external electromagnetic fields. We also study schemes for improved quantum memories in terms of storage times, efficiency or bandwidth.
High temperature crystal growth techniques are used to produce state of the art samples doped with rare earth ions like europium (optical memories) or neodymium (optical and microwave memories). Optical coherent and high resolution spectroscopy, spectral hole burning, as well as optically detected magnetic resonance allow us to determine all relevant parameters and investigate memory schemes.
Single crystals for quantum memories
Nanostructures for hybrid quantum systems
Spectral analysis
Long-lived quantum states translate into narrow linewidths. Thus, rare earth doped crystals can exhibit extremely narrow optical linewidths, in the range of a few kHz or even a few 100 Hz in some cases. This enables highly selective spectral filtering that has applications in acousto-optic medical imaging, laser frequency stabilization for metrology or wireless and radar signal analysis.
We develop crystals in which a strong optical absorption line can be tailored to create narrow transmission windows. These features, called spectral holes, can then be used as a frequency reference or a filter. As an example, for deep tissue imaging in the infrared, we grow thulium doped crystals that can filter light that interacted with ultrasound waves. In this way, the optical signal provides images that carry additional information compared to ultrasound only diagnostic. We also investigate transparent ceramics as an alternative to single crystals. These materials can be produced in large volumes and complex shapes that can benefit to spectral analysis applications, while showing linewidths nearly as narrow as the best single crystals.
RESEARCH
NEWS
February 2024
Prof. Rogéria Gonçalves is visiting the group for three weeks in the framework of our common USP-COFECUB project, together with Gilles Gasser's group, on nanomaterials for medical applications.
January 2024
Philippe gave an invited talk on hybrid materials for quantum technologies during the Quantum Day, a great workshop organized by the "Institut Parisien de Chimie Physique et Théorique (IP2CT)" of Sorbonne University.
January 2024
Congratulations to Diana who successfully defended her "Habilitation à Diriger des Recherches" of PSL University!
November 2023
Alexey won a project for large equipment to study nanophotonic structures funded by the regional Quantip network. This work will be performed in collaboration with Kamel Bencheikh and Ariel Levenson from the C2N laboratory.
November 2023
Philippe and Pauline visit Prof. Rogéria Gonçalves group at the University of São Paulo in Ribeirão Preto.
October 2023
The first detection of a single rare-earth ion in a nanoparticle coupled to a fiber-microcavity has just been published in Optica. We are delighted to work on this topic with the teams of Hughes de Riedmatten at ICFO and David Hunger at KIT. Check here the outreach news published on ICFO website.
October 2023
Welcome to Joa Morla Al Yahya, Alexandre Hebbrecht, and Lucas A.O.S. Silva who joined the group as PhD students!
October 2023
Philippe gave an invited talk at the Advanced Solid State Lasers conference which was organized by Optica in Seattle, USA.
October 2023
Diana wins an ANR project entitled 'Emerging Molecular Quantum Bits'. The project will last for four years and involves the groups of Mario Ruben at the University of Strasbourg and Patrice Bertet at CEA.
July 2023
The group of Patrice Bretet at CEA demonstrated single spin detection in the micro-wave domain using a CaWO4 crystal containing traces of erbium. The work is published in Nature and we are very happy to have been involved in this great achievement!
February 2023
Alexey Tiranov joins the group as a Junior Professor. He was previously working on quantum nanophotonics in the group of Peter Lodhal at the Niels Bohr Institute in Copenhagen. Alexey did his PhD with Nicolas Gisin at the University of Geneva
OPEN POSITIONS
We have no open positions at this moment.
COLLABORATIONS
T. Chanelière, S. Seidelin, Institut Néel (France)
Y. Le Coq, SYRTE (France)
A. Louchet-Chauvet, F. Ramaz, Institut Langevin (France)
L. Morvan, P. Berger, S. Welinski, Thales Research and Technology (France)
G. Hétet, ENS (France)
J. Achard, Laboratoire des Sciences des Procédés et des Matériaux (France)
S. Kröll, A. Walther, Lund University (Sweden)
M. Afzelius, University of Geneva (Switzerland)
F. Koppens and H. de Riedmatten, ICFO (Spain)
T. Halfmann, University of Darmstadt (Germany)
D. Hunger, M. Ruben, S. Kumar KIT (Germany)
A. Ikesue, World Lab Co. (Japan)
C. Thiel, Roger Macfarlane and Rufus Cone, Montana State University (USA)
J. Morton, University College London (UK)
L. Bausa, Autonomous University of Madrid (Spain)
R. Gonçalves, University of São Paulo (Brazil)
A. Faraon, Caltech (USA)
P. Bertet, CEA (France)
Jeff Thompson, Princeton University (USA)
M. Ried, JP Wells, University of Christchurch (New-Zealand)
T. Gacoin, Ecole polytechnique (France)
R. Kolesov, J. Wrachtrup, Stuttgart University (Germany)
Z-Q Zhou, USTC Hefei (China)
Publications
2023
Wang, Z.; Balembois, L.; Rančić, M.; Billaud, E.; Le Dantec, M.; Ferrier, A.; Goldner, P.; Bertaina, S.; Chanelière, T.; Esteve, D.; Vion, D.; Bertet, P.; Flurin, E. Single-Electron Spin Resonance Detection by Microwave Photon Counting. Nature 2023, 619 (7969), 276–281. https://doi.org/10.1038/s41586-023-06097-2.
Nicolas, L.; Businger, M.; Sanchez Mejia, T.; Tiranov, A.; Chanelière, T.; Lafitte-Houssat, E.; Ferrier, A.; Goldner, P.; Afzelius, M. Coherent Optical-Microwave Interface for Manipulation of Low-Field Electronic Clock Transitions in 171Yb3+:Y2SiO5. npj Quantum Inf 2023, 9 (1), 1–7. https://doi.org/10.1038/s41534-023-00687-8.
Fossati, A.; Serrano, D.; Liu, S.; Tallaire, A.; Ferrier, A.; Goldner, P. Optical Line Broadening Mechanisms in Rare-Earth Doped Oxide Nanocrystals. Journal of Luminescence 2023, 263, 120050. https://doi.org/10.1016/j.jlumin.2023.120050.
Deshmukh, C.; Beattie, E.; Casabone, B.; Grandi, S.; Serrano, D.; Ferrier, A.; Goldner, P.; Hunger, D.; Riedmatten, H. de. Detection of Single Ions in a Nanoparticle Coupled to a Fiber Cavity. Optica, OPTICA 2023, 10(10), 1339–1344. https://doi.org/10.1364/OPTICA.491692.
Billaud, E.; Balembois, L.; Le Dantec, M.; Rančić, M.; Albertinale, E.; Bertaina, S.; Chanelière, T.; Goldner, P.; Estève, D.; Vion, D.; Bertet, P.; Flurin, E. Microwave Fluorescence Detection of Spin Echoes. Phys. Rev. Lett. 2023, 131 (10), 100804. https://doi.org/10.1103/PhysRevLett.131.100804.
Becher, C.; Gao, W.; Kar, S.; Marciniak, C. D.; Monz, T.; Bartholomew, J. G.; Goldner, P.; Loh, H.; Marcellina, E.; Goh, K. E. J.; Koh, T. S.; Weber, B.; Mu, Z.; Tsai, J.-Y.; Yan, Q.; Huber-Loyola, T.; Höfling, S.; Gyger, S.; Steinhauer, S.; Zwiller, V. 2023 Roadmap for Materials for Quantum Technologies. Mater. Quantum. Technol. 2023, 3 (1), 012501. https://doi.org/10.1088/2633-4356/aca3f2.
Bartholomew, J. G.; de Oliveira Lima, K.; Ferrier, A.; Kinos, A.; Karlsson, J.; Rippe, L.; Walther, A.; Scheblykin, I.; Kröll, S.; Goldner, P. High-Resolution Spectroscopic Techniques for Studying Rare-Earth Ions in Nanoparticles. Journal of Luminescence 2023, 257, 119743. https://doi.org/10.1016/j.jlumin.2023.119743.
2022
Zhou, Z.-Q.; Chen, D.-L.; Jin, M.; Zheng, L.; Ma, Y.-Z.; Tu, T.; Ferrier, A.; Goldner, P.; Li, C.-F.; Guo, G.-C. A Transportable Long-Lived Coherent Memory for Light Pulses. Science Bulletin 2022, 67 (23), 2402–2405. https://doi.org/10.1016/j.scib.2022.11.007.
Stevenson, P.; Phenicie, C. M.; Gray, I.; Horvath, S. P.; Welinski, S.; Ferrenti, A. M.; Ferrier, A.; Goldner, P.; Das, S.; Ramesh, R.; Cava, R. J.; de Leon, N. P.; Thompson, J. D. Erbium-Implanted Materials for Quantum Communication Applications. Phys. Rev. B 2022, 105 (22), 224106. https://doi.org/10.1103/PhysRevB.105.224106.
Serrano, D.; Kuppusamy, S. K.; Heinrich, B.; Fuhr, O.; Hunger, D.; Ruben, M.; Goldner, P. Ultra-Narrow Optical Linewidths in Rare-Earth Molecular Crystals. Nature 2022, 603 (7900), 241–246. https://doi.org/10.1038/s41586-021-04316-2.
Rančić, M.; Le Dantec, M.; Lin, S.; Bertaina, S.; Chanelière, T.; Serrano, D.; Goldner, P.; Liu, R. B.; Flurin, E.; Estève, D.; Vion, D.; Bertet, P. Electron-Spin Spectral Diffusion in an Erbium Doped Crystal at Millikelvin Temperatures. Phys. Rev. B 2022, 106 (14), 144412. https://doi.org/10.1103/PhysRevB.106.144412.
Ngambou, M. W. N.; Perrin, P.; Balasa, I.; Brinza, O.; Valentin, A.; Mille, V.; Bénédic, F.; Goldner, P.; Tallaire, A.; Achard, J. Optimizing Ion Implantation to Create Shallow NV Centre Ensembles in High-Quality CVD Diamond. Mater. Quantum. Technol. 2022, 2 (4), 045001. https://doi.org/10.1088/2633-4356/ac9948.
Lafitte-Houssat, E.; Ferrier, A.; Welinski, S.; Morvan, L.; Afzelius, M.; Berger, P.; Goldner, P. Optical and Spin Inhomogeneous Linewidths in 171Yb 3 + :Y 2 SiO5. Opt. Mater.: X 2022, 100153. https://doi.org/10.1016/j.omx.2022.100153.
Lafitte-Houssat, E.; Ferrier, A.; Afzelius, M.; Berger, P.; Morvan, L.; Welinski, S.; Goldner, P. Optical homogeneous and inhomogeneous linewidths in 171Yb3+:Y2SiO5. Optics and Spectroscopy 2022, 130 (1), 23. https://doi.org/10.21883/OS.2022.01.51885.29-21.
Harada, N.; Tallaire, A.; Serrano, D.; Seyeux, A.; Marcus, P.; Portier, X.; Labbé, C.; Goldner, P.; Ferrier, A. Controlling the Interfacial Reactions and Environment of Rare-Earth Ions in Thin Oxide Films towards Wafer-Scalable Quantum Technologies. Mater. Adv. 2022, 3 (1), 300–311. https://doi.org/10.1039/D1MA00753J.
Dudek, M.; Szalkowski, M.; Misiak, M.; Ćwierzona, M.; Skripka, A.; Korczak, Z.; Piątkowski, D.; Woźniak, P.; Lisiecki, R.; Goldner, P.; Maćkowski, S.; Chan, E. M.; Schuck, P. J.; Bednarkiewicz, A. Size-Dependent Photon Avalanching in Tm3+ Doped LiYF4 Nano, Micro, and Bulk Crystals. Adv. Opt. Mater. 2022, n/a (n/a), 2201052. https://doi.org/10.1002/adom.202201052.
Chiossi, F.; Lafitte-Houssat, E.; Xia, K.; Sardi, F.; Zhang, Z.; Welinski, S.; Berger, P.; Morvan, L.; Foteinou, V.; Ferrier, A.; Serrano, D.; Kolesov, R.; Wrachtrup, J.; Goldner, P. Photon Echo, Spectral Hole Burning, and Optically Detected Magnetic Resonance in $^{171}\mathrm{Yb}^{3+}$:${\mathrm{LiNbO}}_{3}$ Bulk Crystal and Waveguides. Phys. Rev. B 2022, 105 (18), 184115. https://doi.org/10.1103/PhysRevB.105.184115.
Businger, M.; Nicolas, L.; Mejia, T. S.; Ferrier, A.; Goldner, P.; Afzelius, M. Non-Classical Correlations over 1250 Modes between Telecom Photons and 979-Nm Photons Stored in 171Yb3+:Y2SiO5. Nat Commun 2022, 13 (1), 6438. https://doi.org/10.1038/s41467-022-33929-y.
Balasubramanian, P.; Osterkamp, C.; Brinza, O.; Rollo, M.; Robert-Philip, I.; Goldner, P.; Jacques, V.; Jelezko, F.; Achard, J.; Tallaire, A. Enhancement of the Creation Yield of NV Ensembles in a Chemically Vapour Deposited Diamond. Carbon 2022, 194, 282–289. https://doi.org/10.1016/j.carbon.2022.04.005.
Alexander, J.; Dold, G.; Kennedy, O. W.; Šimėnas, M.; O’Sullivan, J.; Zollitsch, C. W.; Welinski, S.; Ferrier, A.; Lafitte-Houssat, E.; Lindström, T.; Goldner, P.; Morton, J. J. L. Coherent Spin Dynamics of Rare-Earth Doped Crystals in the High-Cooperativity Regime. Phys. Rev. B 2022, 106 (24), 245416. https://doi.org/10.1103/PhysRevB.106.245416.
2021
Mothkuri, S.; Reid, M. F.; Wells, J.-P. R.; Lafitte-Houssat, E.; Goldner, P.; Ferrier, A. Electron-Nuclear Interactions as a Test of Crystal Field Parameters for Low-Symmetry Systems: Zeeman Hyperfine Spectroscopy of Ho 3 + -Doped Y 2 SiO 5. Phys. Rev. B 2021, 103 (10), 104109. https://doi.org/10.1103/PhysRevB.103.104109.
Le Dantec, M.; Rančić, M.; Lin, S.; Billaud, E.; Ranjan, V.; Flanigan, D.; Bertaina, S.; Chanelière, T.; Goldner, P.; Erb, A.; Liu, R. B.; Estève, D.; Vion, D.; Flurin, E.; Bertet, P. Twenty-Three–Millisecond Electron Spin Coherence of Erbium Ions in a Natural-Abundance Crystal. Sci. Adv. 2021, 7 (51), eabj9786. https://doi.org/10.1126/sciadv.abj9786.
Kumar, K. S.; Serrano, D.; Nonat, A. M.; Heinrich, B.; Karmazin, L.; Charbonnière, L. J.; Goldner, P.; Ruben, M. Optical Spin-State Polarization in a Binuclear Europium Complex towards Molecule-Based Coherent Light-Spin Interfaces. Nat Commun 2021, 12 (1), 2152. https://doi.org/10.1038/s41467-021-22383-x.
Kinos, A.; Hunger, D.; Kolesov, R.; Mølmer, K.; de Riedmatten, H.; Goldner, P.; Tallaire, A.; Morvan, L.; Berger, P.; Welinski, S.; Karrai, K.; Rippe, L.; Kröll, S.; Walther, A. Roadmap for Rare-Earth Quantum Computing. arXiv:2103.15743 [quant-ph] 2021.
Jobbitt, N. L.; Wells, J.-P. R.; Reid, M. F.; Horvath, S. P.; Goldner, P.; Ferrier, A. Prediction of Optical Polarization and High-Field Hyperfine Structure via a Parametrized Crystal-Field Model for Low-Symmetry Centers in Er 3 + -Doped Y 2 SiO 5. Phys. Rev. B 2021, 104 (15), 155121. https://doi.org/10.1103/PhysRevB.104.155121.
Casabone, B.; Deshmukh, C.; Liu, S.; Serrano, D.; Ferrier, A.; Hümmer, T.; Goldner, P.; Hunger, D.; de Riedmatten, H. Dynamic Control of Purcell Enhanced Emission of Erbium Ions in Nanoparticles. Nat Commun 2021, 12 (1), 3570. https://doi.org/10.1038/s41467-021-23632-9.
Alizadeh, Y.; Wells, J.-P. R.; Reid, M. F.; Ferrier, A.; Goldner, P. Laser Site-Selective Spectroscopy of Nd3+-Doped Y2SiO5. Journal of Luminescence 2021, 234, 117959. https://doi.org/10.1016/j.jlumin.2021.117959.
HOW TO REACH US
Contact
Dr. Philippe Goldner
Institut de Recherche de Chimie Paris
Chimie ParisTech
11, rue Pierre et Marie Curie
75231 Paris cedex 05
Email: philippe.goldner@chimie-paristech.fr
Phone: + 33 (0) 1 53 73 79 30
Access
The Institute is hosted by Chimie ParisTech and located in the 5th district of Paris. The nearest metro station is Luxembourg on the RER B line.